Introducing: The AI Insights Fabric. Why Enterprises Need a New Data Architecture for AI. Read the Full White Paper >>

October 1, 2021

Data Fabric Data Pipelines For Faster Analysis

What makes Data Fabric data pipelines so special is that they don't rely on persisting data first.

Promethium

Data is everywhere! So when business leaders need data to support decisions data needs to be pulled from many different source systems.

The traditional approach is to use complex and rigid ETL to consolidate data to a central repository, like a data warehouse. The limitations of this approach are clear and include:

  • It’s not possible to move all enterprise data to a central repository

  • Finding, validating and consolidating data for new needs can take months

  • Data needs to be moved before business needs can be met

  • Consumes thousands of hours each year – that time that could be better spent

  • ETL is rigid, and once implemented making changes is very difficult

  • Data volume and demand is growing, but the windows for ETL jobs to move data are not

Limitations of ETL approach

Data Fabric Data Pipelines

Data Fabric promises to be the ideal solution to address the limitations of the traditional ETL approach. In sharp contrast to the traditional approach, Data Fabric is flexible and agile by design. Data Fabric’s special data pipelines are a key reason.

What makes Data Fabric data pipelines so special is that they don’t rely on persisting data first and they make it possible to perform analysis on data from many sources on-the-fly. This is how Data Fabric data pipelines compare:

Data Fabric Pipelines

Traditional Approach

Access data where it lives

Access data from central repository after it is moved

Ingest, transform and integrate data on the fly without persisting into data lakes, data warehouses, NoSQL or object stores

​Persisting data is required

See results in real time at each step

See results after data is transformed and moved

Make changes to pipelines in real time

Changes are difficult and can result in building new vs changing existing

Doesn’t require data duplication

Results in many duplicate copies of data being stored and managed

The Applications

When applied to specific situations Data Fabric data pipelines can significantly boost performance for data analytics.

Self Service Data: Complexity and technical skills have stood in the way of self service data. Data Fabric data pipelines fix the problems by solving data integration challenges and reducing the need for technical skills.

Self Service Analytics: Pre-built dashboards with filters that query out of date data warehouses are a poor excuse for self service analytics. Replace the rigid data warehouse with Data Fabric data pipelines that enable on-demand federated queries directly against the latest data.

Rapid Idea Testing: Quickly testing data analytics ideas just isn’t possible when data lives in different systems and needs to be extracted, transformed and persisted somewhere first. Because Data Fabric data pipelines do everything on the fly without persisting data new ideas can be tested quickly.

New Data Sources: The business needs a new data source added to data already in the data warehouse, but there just isn’t time. Data Fabric data pipelines can join the data from the new datasource with the new data source on-the-fly.

Cloud Data Warehouse or Lake: While cloud solutions offer many benefits, costs can grow quickly. Data Fabric data pipelines minimize the amount of data that actually needs to be moved to cloud solutions. Keep cloud costs under control and

Benefits

With the help of Data Fabric data pipelines it’s possible to focus on meeting business needs first before ever moving data. That means more satisfied business stakeholders who can made decisions backed by data.

Promethium Data Fabric

Benefits include:

  • Faster: Not waiting for complex and rigid ETL jobs to be built and not waiting for data to be moved makes data analytics faster.

  • More Productive: The time to complete data jobs is decreased making it possible for resources to do more.

  • Less Cost: Less data duplication and management helps to avoid costs.

  • Business Outcomes: Business outcomes are what really matter, and making more data available faster can drive more and better business outcomes.

Data Fabric data pipelines have the potential to help data and analytics leaders reimagine data analytics.


Learn More

Watch the data pipeline design expert session with Deloitte

Try it yourself. All you need is 10 minutes. Try now


Related Blog Posts

October 28, 2025

Why AI-Ready Data Demands Both Fabric and Mesh — Not One or the Other

AI-ready data isn’t achieved through fabric or mesh alone — it’s the synergy between unified data access and distributed ownership that makes self-service and trustworthy AI possible.

Continue Reading »
Blog post cover with the title "The ROI Reality Check: Measuring Real Business Impact from Data Fabric Investments" on the left and a dollar symbol and 5 bars increasing in size on the right hand side
October 8, 2025

The ROI Reality Check: Measuring Real Business Impact from Data Fabric Investments

Everyone talks about data fabric ROI, but few share real numbers. Discover measurable success metrics, common mistakes, and the buy vs. build impact on business value.

Continue Reading »
September 24, 2025

Built to Evolve vs. Locked in Place — The Adaptability Advantage

In Parts 1 and 2, we explored the fundamental choice between open and closed data fabric architectures, and examined the hidden costs of Microsoft Fabric’s migration requirements. Now comes the crucial question:...

Continue Reading »